010: 能不能说说 TCP 的拥塞控制?
上一节所说的流量控制发生在发送端跟接收端之间,并没有考虑到整个网络环境的影响,如果说当前网络特别差,特别容易丢包,那么发送端就应该注意一些了。而这,也正是拥塞控制
需要处理的问题。
对于拥塞控制来说,TCP 每条连接都需要维护两个核心状态:
- 拥塞窗口(Congestion Window,cwnd)
- 慢启动阈值(Slow Start Threshold,ssthresh)
涉及到的算法有这几个:
- 慢启动
- 拥塞避免
- 快速重传和快速恢复
接下来,我们就来一一拆解这些状态和算法。首先,从拥塞窗口说起。
拥塞窗口
拥塞窗口(Congestion Window,cwnd)是指目前自己还能传输的数据量大小。
那么之前介绍了接收窗口的概念,两者有什么区别呢?
- 接收窗口(rwnd)是
接收端
给的限制 - 拥塞窗口(cwnd)是
发送端
的限制
限制谁呢?
限制的是发送窗口
的大小。
有了这两个窗口,如何来计算发送窗口
?
发送窗口大小 = min(rwnd, cwnd)
取两者的较小值。而拥塞控制,就是来控制cwnd
的变化。
慢启动
刚开始进入传输数据的时候,你是不知道现在的网路到底是稳定还是拥堵的,如果做的太激进,发包太急,那么疯狂丢包,造成雪崩式的网络灾难。
因此,拥塞控制首先就是要采用一种保守的算法来慢慢地适应整个网路,这种算法叫慢启动
。运作过程如下:
- 首先,三次握手,双方宣告自己的接收窗口大小
- 双方初始化自己的拥塞窗口(cwnd)大小
- 在开始传输的一段时间,发送端每收到一个 ACK,拥塞窗口大小加 1,也就是说,每经过一个 RTT,cwnd 翻倍。如果说初始窗口为 10,那么第一轮 10 个报文传完且发送端收到 ACK 后,cwnd 变为 20,第二轮变为 40,第三轮变为 80,依次类推。
难道就这么无止境地翻倍下去?当然不可能。它的阈值叫做慢启动阈值,当 cwnd 到达这个阈值之后,好比踩了下刹车,别涨了那么快了,老铁,先 hold 住!
在到达阈值后,如何来控制 cwnd 的大小呢?
这就是拥塞避免做的事情了。
拥塞避免
原来每收到一个 ACK,cwnd 加1,现在到达阈值了,cwnd 只能加这么一点: 1 / cwnd。那你仔细算算,一轮 RTT 下来,收到 cwnd 个 ACK, 那最后拥塞窗口的大小 cwnd 总共才增加 1。
也就是说,以前一个 RTT 下来,cwnd
翻倍,现在cwnd
只是增加 1 而已。
当然,慢启动和拥塞避免是一起作用的,是一体的。
快速重传和快速恢复
快速重传
在 TCP 传输的过程中,如果发生了丢包,即接收端发现数据段不是按序到达的时候,接收端的处理是重复发送之前的 ACK。
比如第 5 个包丢了,即使第 6、7 个包到达的接收端,接收端也一律返回第 4 个包的 ACK。当发送端收到 3 个重复的 ACK 时,意识到丢包了,于是马上进行重传,不用等到一个 RTO 的时间到了才重传。
这就是快速重传,它解决的是是否需要重传的问题。
选择性重传
那你可能会问了,既然要重传,那么只重传第 5 个包还是第5、6、7 个包都重传呢?
当然第 6、7 个都已经到达了,TCP 的设计者也不傻,已经传过去干嘛还要传?干脆记录一下哪些包到了,哪些没到,针对性地重传。
在收到发送端的报文后,接收端回复一个 ACK 报文,那么在这个报文首部的可选项中,就可以加上SACK
这个属性,通过left edge
和right edge
告知发送端已经收到了哪些区间的数据报。因此,即使第 5 个包丢包了,当收到第 6、7 个包之后,接收端依然会告诉发送端,这两个包到了。剩下第 5 个包没到,就重传这个包。这个过程也叫做选择性重传(SACK,Selective Acknowledgment),它解决的是如何重传的问题。
快速恢复
当然,发送端收到三次重复 ACK 之后,发现丢包,觉得现在的网络已经有些拥塞了,自己会进入快速恢复阶段。
在这个阶段,发送端如下改变:
- 拥塞阈值降低为 cwnd 的一半
- cwnd 的大小变为拥塞阈值
- cwnd 线性增加
以上就是 TCP 拥塞控制的经典算法: 慢启动、拥塞避免、快速重传和快速恢复。